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The van der Pol equation provides an important mathematical model for dynamical
systems having a single (unstable) "xed point, along with a single (stable) limit cycle.
Examples of such phenomena arise in all of the natural and engineering sciences [1, 2]. The
details of the general dynamics of such a system are determined by one parameter, �. In
dimensionless form, this non-linear di!erential equation can be written [1] as

xK#x"� (1!x�)xR , �'0. (1)

Another important use for this equation is that it provides an interesting model for testing
numerical integration methods. The main purpose of this Letter to the Editor is to carry out
a detailed numerical investigation of a new "nite-di!erence scheme for equation (1). The
new scheme is based on the non-standard procedures of Mickens [3] for constructing
discrete models of di!erential equations. The results to follow generalize the previous work
of Mickens [4] on the &&unplugged'' van der Pol oscillator equation,

xK#x"!�x�xR . (2)

To proceed, consider a systemmodelled by two "rst order, ordinary di!erential equations
(ODE)

xR "ax#by#f (x, y), yR "cx#dy#g(x, y), (3a, b)

where (xN , yN )"(0, 0) is the unique "xed point or constant solution, and (a, b, c, d ) are
constant parameters. As derived byMickens [5], the non-standard "nite-di!erence (NSFD)
scheme for equations (3) is
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where � and � can be explicitly written in terms of the parameters (a, b, c, d) and the time
step-size h"�t. In these equations, the discrete time t

�
is given by t

�
"hk, where k is an

integer, and x
�
and y

�
are, respectively, approximations to x(t

�
) and y(t

�
). If equation (1) is

rewritten as

dx

dt
"y,

dy

dt
"!x#� (1!x�)y, (5a, b)

then the corresponding values for (a, b, c, d ) and the functions (�, �) are given by the
following expressions [5]:

a"0, b"1, c"!1, d"�, (6a)

f (x, y)"0, g (x, y)"!�x�y, (6b)
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Note that � (�, h) and �(�, h) are de"ned for all values of �; for example, if �'2, then
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Consequently, the NSFD scheme for the system form of the van der Pol equation is
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If equation (8a) is used to eliminate the y
�
variable, then equation (8b) becomes
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The discrete form of the van der Pol equation in system form, equation (8), is
semi-implicit. This means that given (x

�
, y

�
), the value for x

���
can be calculated from

equation (8a). Substitution for (x
�
, y

�
) and x

���
into equation (8b) then allows the

determination of y
���

. Also of interest is the result given by equation (9) for the discrete
form of the second order form of the van der Pol equation, i.e., equation (1). The following
points should be indicated:
(1) The second order time derivative, in equation (1), is replaced by the usual form of

a central di!erence expression, i.e.,

xKP
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#x

���
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, (10)

where from equation (6c)

�"h#O(h�). (11)

(2) The non-linear term (1!x�)xR is replaced by an expression that is locally evaluated
for the function (1!x�), but with a non-standard backward Euler representation for the
"rst derivative [5], i.e.,

(1!x�)xR P(1!x�
�
)�
x
�
!�x

���
� �, (12)

where from equation (6d)

�"1#O(h). (13)

(3) The linear x term in the original van der Pol equation is replaced by the combination

xP

2(1!�)x
�
#(��#��!1)x

���
��

. (14)

Non-standard "nite-di!erence schemes generally give expressions for linear terms,
occurring in the ODEs having oscillatory solutions, as linear combinations of x

�
and x

���
.

(The background to all of the above analysis can be found in reference [5].)
The remainder of the discussion will center on using equations (8) for the calculation of

numerical solutions to the van der Pol equation. This analysis is compared with results
obtained by using a direct forward-Euler scheme, i.e.,
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All comparisons between the two schemes were made using the same values of (�, h) and the
initial values (x

�
, y

�
).

An extremely important feature of problems involving solutions with oscillations is that
the time step-size must be selected to be small in comparison to the &&characteristic time'' of
the oscillation. This characteristic time may depend on the parameters appearing in the
original equations and/or the initial conditions [4]. Consequently, to begin the numerical
study of equations (8) and (15), an estimate of the characteristic time must be made. Using



TABLE 1

Properties of the numerical solutions for �"0)5, x
�
"0)5, y

�
"0 as h varies. S¸C means

stable limit cycle

h Non-standard method Euler's method

0)01 SLC SLC
0)1 SLC SLC
0)2 SLC SLC
0)5 SLC SLC
0)51 SLC Over#ow
0)55 Over#ow Over#ow
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dimensional analysis, see section 1.3.3 of reference [1], the following result can be derived
for the van der Pol equation:

�"
(period of free oscillations)

(damping time)
"

2�
¹
�

. (16)

Note that the period of free oscillations for equation (1) is 2�. Consequently, equation (16)
can be used to determine the characteristic damping time, ¹

�
in terms of the parameter �; it is

given by

¹
�
"

2�
�
. (17)

An alternative way of viewing this situation is to understand that when � is small, the
characteristic time is determined by the period of the free oscillations, while for large values
of �, i.e., strong damping, the characteristic time is given by equation (17). For any value of
�*0, a useful estimate of the characteristic time is given by the formula

¹(�)"
2�

1#�
. (18)

It has the useful feature of nicely extrapolating between the low and high values of �. The
time step-size, �t"h, used to calculate numerical solutions should be small compared to
¹(�), i.e.,

h�¹. (19)

A typical choice is to use

h"

¹

20
"�

1

10��
�

1#��. (20)

The net result of this discussion is that for a given value of the parameter �, there should
exist a maximum time step-size for which realistic oscillatory behavior is observed in the
calculated numerical solutions. Larger values of the step-size will lead to meaningless
numerical values (generally over#ow is expected).
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The results presented in Table 1 clearly illustrate the above discussion. The parameter
� was "xed at �"0)5 and the initial condition was taken as x

�
"0)5 and y

�
"0. The NSFD

and Euler schemes, respectively, given by equations (8) and (15) were then used to obtain
numerical solutions for the van der Pol equation. For values of � in the range 0(�)0)5,
both methods gave numerical results consistent with the existence of a unique limit cycle.
However, the NSFD scheme could be extended to a higher value of the step-size, in
comparison with the Euler method, before over#ow took place. Figure 1 shows the
calculated phase-space trajectories using the NSFD scheme of equation (8). Similar results
were obtained using the Euler method for values of h for which its numerical solutions were
bounded. Computations were also done for other values of � with various values for h. The
same general behavior was observed.
Figure 1. Phase-space trajectory using NSFD method with �"0)5, x
�
"0)5, y

�
"0, and h"(a) 0)01, (b) 0)1,

(c) 0)2, (d) 0)5, (e) 0)51, (f ) 0)54.



Figure 1. Continued.
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In more detail, the following procedure was carried out.

(1) A value of � was selected, along with a set of initial conditions (x
�
, y

�
).

(2) With these parameters, (�, x
�
, y

�
), a series of numerical solutions were obtained with

h increasing in value until over#ow took place. The minimum value for h to give over#ow
was called the critical step-size, h

�
.

(3) Writing h
�
"A¹(�), the value of A was calculated. This relationship assumes that the

critical step-size is proportional to the estimate of the characteristic time given in equation
(18). Table 2 provides a summary of h

�
and A values for 0(�(5.

Two results can be obtained from studying Table 2. First, the critical step-size value
decreases as � increases. Second, the value of the proportionality &&constant'' A in the
relation h "A¹(�) has a weak dependence on �, but has the approximate value of one-tenth
�



Figure 1. Continued.
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for 0(�)5. Given the heuristic nature of the derivation of equation (18), this is quite
a good result. Note that if h

�
+¹/10, then the time step-size selection, as given by equation

(20), is about one-half the value of h
�
. For example, let �"0)5; then h"0)209 from equation

(20) and h
�
"0)544. However, a close examination of Figure 1 shows that a step-size value of

0)2 is not small enough if an accurate trajectory in phase space is needed. Even for h"0)1,
non-smoothness is seen in the initial transient behaviour of the approach to the limit cycle.
Further consideration of Figure 1 for large values of h, i.e., 0)30 �h�0)54, shows that

while the corresponding phase spaces are not numerically correct, the limit cycle structure is
maintained until over#ow occurs at h

�
+0)544. This feature of the NSFD scheme is

important, since it implies that an accurate solution, x(t) versus t, and an accurate
phase-space trajectory can be obtained by a decrease in step-size.



TABLE 2

<alues of critical step-sizes (h
�
) and A

� h
�
"A¹ A

0)5 0)544 0)130
1)5 0)269 0)107
2)0 0)218 0)104
5)0 0)103 0)097
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The following is a summary of the results and issues related to the work of this Letter.

(1) An NSFD scheme was constructed for the van der Pol oscillator ODE. This
particular discrete model was obtained by requiring the linear part of the di!erence scheme
to have exactly the same stability properties as the corresponding linear part of the van der
Pol equation. (See references [3, 5] for the details.)
(2) The NSFD scheme is semi-explicit, i.e., "rst x

���
is obtained from (x

�
, y

�
) and then

y
���

is obtained from (x
�
, y

�
, x

���
).

(3) Dimensional analysis allowed the determination of an estimate for the characteristic
time of the van der Pol ODE in terms of the parameter �. The oscillatory nature of the actual
solution requires that the time step-size to be used in calculating a numerical solution, be
small compared to the characteristic time ¹(�), i.e., h�¹(�).
(4) Numerical studies showed that there exists a critical step-size, h

�
, such that if h*h

�
,

over#ow occurs, while for 0(h(h
�
, the numerical solution had the general feature of

a limit cycle. The numerical accuracy improved with a decrease in the step-size.
(5) Comparison of the NSFD and forward-Euler schemes showed them to give roughly

the same numerical results. However, the NSFD scheme was more robust, i.e., provided the
proper limit cycle behavior for a larger range of � values.

It should also be indicated that several interesting features emerged from a close
examination of the numerical solutions.

(1) For the same values of � and h, the Euler method gave oscillations having larger
periods than the NSFD scheme.
(2) For a "xed value of �, the NSFD scheme gave numerical solutions for which the

period decreased as the step-size h increased.
(3) The opposite of (2) was found for the Euler method, i.e., for a given � value, the period

of the oscillators increased when h was increased.

Such behaviors for the numerical solutions clearly call for a mathematical explanation.
Finally, there are two issues to be investigated in future work. First, obtain a better

estimate for the characteristic time, ¹(�), as a function of �. Second, determine a more
accurate time step-size limitation relation than the one given by equation (20). It is also of
interest to extend this work to coupled systems of ODEs, each having possible limit cycle
behavior [6].
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